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Abstract. We study nonlinear elliptic problems driven by the p-Laplacian and with a nonsmooth
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1. Introduction

The study of the existence of positive solutions for elliptic equations has focused
primarily on semilinear (i.e. p=2) problems with a smooth potential function
(i.e. a continuous right hand side nonlinearity). The techniques used are based
on topological degree theory, variational methods (i.e. critical point theory) and
on the method of upper and lower solutions coupled with monotone iterative
techniques. We refer to the works of Alves and Miyagaki [1], Amann [2],
Ambrosetti and Rabinowitz [3], Brezis and Turner [4], Brown and Budin [5], de
Figueiredo [11], Schechter [27] and Zhou [29]. One condition often used in the
context of variational methods is the so-called Ambrosetti–Rabinowitz condition
(see Alves and Miyagaki [1] and Ambrosetti and Rabinowitz [3]). This condition
says the following:
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Let f �t��� be the right hand side nonlinearity and let

F�z���=
∫ �

0
f �z�r�dr

be the corresponding potential function. There exist �>2 (recall that in the
semilinear case p=2) and M >0, such that

0< �F�z���� �f �z��� for a.a. z∈Z and all �� �>M�

Integrating this condition, we obtain c1�c2 >0, such that

c1�� ��−c2 �F�z��� for a.a. z∈Z and all � ∈��

From this growth condition on F , we see that

lim
�� �→+�

F�z���

�2
=+��

i.e. the potential function is superquadratic or equivalently f is superlinear. In
this setting, we can realize the Mountain Pass Geometry and eventually apply
the Mountain Pass Theorem. However, in several physical applications the non-
linearity f �z�·� is asymptotically linear, a requirement which is incompatible
with the Ambrosetti–Rabinowitz condition. In this paper we study problems
driven by the p-Laplacian and with a nonsmooth, locally Lipschitz potential
(hemivariational inequalities) which do not satisfy the Ambrosetti–Rabinowitz
condition or any of its recent generalizations (see Costa and Magalhaes [8] and
Schechter [27]). We look for positive solutions of such problems. The study of
positive solutions for nonlinear nonsmooth elliptic problems is lagging behind
and only recently there has been the work of Gasiński and Papageorgiou [15],
based on different assumptions and techniques.
Let Z⊆�N be a bounded domain with a C1��-boundary 	 (where 0<�<1).

The problem under consideration is the following:{
−div

(�
x�z��p−2
�N 
x�z�

)∈�j�z�x�z�� for a.a. z∈Z

x�	 =0�
(1.1)

Here p∈�1�+��, j is a locally Lipschitz integrand and �j�z��� denotes the
subdifferential of j�z�·� in the sense of Clarke [7] (generalized subdifferen-
tial; see Section 2). Problems like (1.1) are known in the literature as ‘hemi-
variational inequalities’ and arise in mechanics when one wants to consider more
realistic models with nonsmooth and nonconvex energy functionals. For several
such applications we refer to the book of Naniewicz and Panagiotopoulos [25].
Also problem (1.1) includes as a special case equations with discontinuous
nonlinearities (see Chang [6] and Kourogenis and Papageorgiou [19]). The
mathematical theory of hemivariational inequalities can be traced in the recent
works of Gasiński and Papageorgiou [12–14], Goeleven et al. [16], Motreanu and
Panagiotopoulos [23], Motreanu and Varga [24] and Radulescu [26].
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2. Mathematical Background

Our approach is variational and it is based on the nonsmooth critical point theory
(see Chang [6] and Kourogenis and Papageorgiou [19]), which in turn uses the
subdifferential theory for locally Lipschitz functions due to Clarke [7]. For easy
reference, in this section we recall some basic definitions and facts from these
theories, which we shall need in the sequel. We also recall some basic results
about the spectrum of �−�p�W

1�p
0 �Z�� (i.e. of the negative p-Laplacian with

Dirichlet boundary condition).
Let X be a Banach space and X∗ its topological dual. By �·�X we will denote

the norm of X and by
〈·�·〉

X
the duality brackets for the pair �X�X∗�. A func-

tion 
� X �−→� is said to be locally Lipschitz, if for every x∈X, there exists
a neighbourhood U of x and a constant kU >0 depending on U , such that
�
�z�−
�y���kU�z−y�X for all z�y∈U . From convex analysis we know that

a proper, convex and lower semicontinuous function �� X �−→�
df=�∪�+�� is

locally Lipschitz in the interior of its effective domain dom �
df=�x∈X� ��x�<

+�� (see Denkowski et al. [9, Proposition 5.2.10, p. 532]). In analogy with the
directional derivative of a convex function, we define the generalized directional
derivative of a locally Lipschitz function 
� X−→� at x∈X in the direction
h∈X, by


0�x�h�
df= limsup

x′→x
t↘0


�x′+th�−
�x′�
t

�

The function X�h �−→
0�x�h�∈� is sublinear, continuous and by the
Hahn–Banach theorem it is the support function of a nonempty, convex and
w∗-compact subset of X∗, defined by

�
�x�
df={

x∗ ∈X∗�
〈
x∗�h

〉
X
�
0�x�h� for all h∈X

}
�

The multifunction X�x �−→�
�x�∈2X∗ \�∅� is called the Clarke (or generalized)
subdifferential of 
 at x. If 
��� X �−→� are locally Lipschitz functions, then
��
+���x�⊆�
�x�+���x� and ��t
��x�= t�
�x� for all t∈� and all x∈X.
If 
� X �−→� is continuous, convex (thus locally Lipschitz as well), then for

all x∈X, the generalized subdifferential introduced above coincides with the
subdifferential of 
 in the sense of convex analysis, given by

�
�x�
df={

x∗ ∈X∗ �
〈
x∗�h

〉
X
�
′�x�h� for all h∈X

}
�

where 
′�x�h� is the usual directional derivative of 
 at x in the direction h.
If 
 is strictly differentiable at x (in particular if 
 is continuously Gateaux
differentiable at x), then �
�x�=�
′�x��.
A point x∈X is a critical point of the locally Lipschitz function 
, if 0∈�
�x�.

If x∈X is a critical point, the value c=
�x� is a critical value of 
. It is easy
to check that, if x∈X is a local extremum of 
 (i.e. a local minimum or a local
maximum), then 0∈�
�x� (i.e. x∈X is a critical point).
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In the classical (smooth) theory, a compactness-type condition, known as the
Palais–Smale condition and its extension, the Cerami condition play a crucial
role. In the present nonsmooth setting the Cerami condition (which we shall use
in what follows), takes the following form:
A locally Lipschitz function 
� X→� satisfies the nonsmooth Cerami

condition at level c∈� if any sequence �xn�n�1⊆X, such that 
�xn�−→c is and(
1+�xn�X

)
m
�xn�−→0 as n→+��

where

m
�xn�
df=min

{�x∗�X∗ � x∗ ∈�
�xn�
}

has a strongly convergent subsequence. If this condition is satisfied at every level
c∈�, then we simply say that 
 satisfies the nonsmooth Cerami condition.
Our analysis of problem (1.1) involves �1, the principle eigenvalue of the

negative p-Laplacian with Dirichlet boundary condition �−�p�W
1�p
0 �Z��. So we

need to recall a few known facts about the spectrum of �−�p�W
1�p
0 �Z��. For this

purpose consider the following nonlinear eigenvalue problem:{
−div

(�
x�z��p−2
�N 
x�z�

)=��x�z��p−2x�z� for a.a. z∈Z

x�	 =0�
(2.1)

with p∈�1�+��. The least real number � for which problem (2.1) has a nontrivial
solution is called the first eigenvalue of �−�p�W

1�p
0 �Z�� and is denoted by �1. It

is known that �1 >0, it is isolated and simple (i.e. the associated eigenspace is
one-dimensional). Moreover, we have a variational characterization of �1 via the
Rayleigh quotient, namely

�1= min
x∈W

1�p
0 �Z�

x �=0

�
x�p
p

�x�p
p

(2.2)

and the minimum is attained at the normalized eigenfunction u1. Remark that,
if u1 minimizes the Rayleigh quotient, then so does �u1� and so it follows that
u1 does not change sign in Z. Thus we may assume that u1�z��0 on Z. In
fact, we have that u1�z�>0 for almost all z∈Z and from the nonlinear regular-
ity theory, we have that u1∈C1����Z� with some �∈�0�1�. For details we refer
to Lindqvist [22] and the references therein. The Lusternik–Schnirelmann theory
gives us, in addition to �1 >0, a whole strictly increasing sequence of eigenvalues
0<�1 <�2 < ···, �n−→+�, known as the Lusternik–Schnirelmann or vari-
ational eigenvalues of �−�p�W

1�p
0 �Z��. If p=2, these are all the eigenvalues. If

p �=2, we do not know if this is the case.
The following result is a nonsmooth version of the Mountain Pass Theorem

and can be found in Kourogenis and Papageorgiou [19].
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THEOREM 2.1. If 
� X−→� is locally Lipschitz functional, x0�x1∈X,
there exists a bounded open neighbourhood U of x0, such that x1∈X\U ,
max�
�x0��
�x1��< inf�U 
 and 
 satisfies the nonsmooth Cerami condition at
level c, where

c
df= inf

�∈	0
max
t∈�0�1�



(
��t�

)
�

where

	0
df={

�∈C
(
�0�1��X

)
� ��0�=x0� ��1�=x1

}
�

then c is a critical value of 
 and c� inf�U 
.

For a function x∈W
1�p
0 �Z�, we define

x− df= max�−x�0�

x+ df= max�x�0��

We know that x−�x+∈W
1�p
0 �Z� (see Denkowski et al. [9, Proposition 3.9.29,

p. 348]).

3. Positive Solutions

Our hypotheses on the nonsmooth potential function j are the following:
H�j� j� Z×�−→� is a function, such that

(i) for every � ∈�, j�·��� is measurable;
(ii) for almost all z∈Z, j�z�·� is locally Lipschitz with L��Z�-constant and

j�z�0�=0;
(iii) for almost all z∈Z and all u∈�j�z�0�, we have u�0;

(iv) for almost all z∈Z and all u���∈�j�z���, the function � �−→ u���

�p−1
is non-

decreasing on �0�+��;
(v) there exist functions �0��1∈L��Z�, such that

�0�z���1�p�1�z��p�1 for a.a. z∈Z�

with strict inequalities on sets of positive measures and

limsup
�→0+

pj�z���

�p
� �0�z� and lim

�→+�
u�z���

�p−1
=�1�z�

uniformly for almost all z∈Z, where u�z���∈�j�z���.

Remark 3.1. Note that the assumption

�1�z���1 for a.a. z∈Z
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(see hypothesis H�j��v�) implies in particular that

�1��1�>1�

where �1��1� is the first eigenvalue of the weighted eigenvalue problem{
−div

(�
x�z��p−2
�N 
x�z�

)=��1�z��x�z��p−2x�z� for a.a. z∈Z

x�	 =0

(see Denkowski et al. [10, Definition 3.1.49, p. 342]).

We introduce the truncation function �� �−→�+, defined by

����
df=
{

� if � >0

0 if � �0�

Evidently � is Lipschitz continuous. Let us set j1�z���
df=j�z������. For almost

all z∈Z, j1�z�·� is locally Lipschitz and from Clarke [7, p. 42], we know that

�j1�z���⊆


0 if � <0

conv
{
��j�z�0� � �∈ �0�1�

}
if � =0

�j�z��� if � >0�

(3.1)

Let 
1� W
1�p
0 �Z�−→� be the energy functional, defined by


1�x�
df= 1

p
�
x�p

p−
∫

Z
j1
(
z�x�z�

)
dz ∀x∈W

1�p
0 �Z��

We know that 
1 is locally Lipschitz (see Hu and Papageorgiou [18, p. 313]).
We start our study of problem (1.1) with a simple observation.

LEMMA 3.2. There exist � >0, such that

�
x�p
p−

∫
Z
�0�z��x�z��pdz���
x�p

p ∀x∈W
1�p
0 �Z��

Proof. Let �� W
1�p
0 �Z�−→� be defined by

��x�
df=�
x�p

p−
∫

Z
�0�z��x�z��pdz ∀x∈W

1�p
0 �Z��

Since by hypothesis �0�z���1 for almost all z∈Z, from the variational charac-
terization of �1 >0 (see (2.2)), we have ��0.
Suppose that the lemma is not true. Then by the homogeneity of �, we can find

a sequence �xn�n�1⊆W
1�p
0 �Z� with �
xn�p =1 for n�1, such that ��xn�↘0.
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By the Poincaré inequality and by passing to a subsequence if necessary, we may
assume that

xn

w−→x in W
1�p
0 �Z�

xn−→x in Lp�Z�

xn�z�−→x�z� for a.a. z∈Z

�xn�z��� k�z� for a.a. z∈Z�

with k∈Lp�Z�. Then, from the weak lower semicontinuity of the norm functional,
we have

�
x�p
p � liminf

n→+�
�
xn�p

p

and ∫
Z
�0�z��xn�z��pdz−→

∫
Z
�0�z��x�z��pdz�

So in the limit as n→+�, we obtain

�
x�p
p−

∫
Z
�0�z��x�z��pdz�0� (3.2)

But �0�z���1 for almost all z∈Z, so

�
x�p
p ��1�x�p

p

and so from (2.2), we get that x=±u1 or x≡0.
If x≡0, the �
xn�p −→0, hence from the Poincaré inequality

xn −→ 0 in W
1�p
0 �Z��

a contradiction to the fact that �
xn�p =1 for n�1. So x=±u. Since u1�z�>0
for all z∈Z (see Section 2), from (3.2), we have

�
x�p
p �

∫
Z
�0�z��x�z��pdz<�1�x�p

p (3.3)

(recall that the inequality �0�z���1 is strict on a set of positive measure).
Comparing (2.2) and (3.3) we reach a contradiction. This proves the lemma. �

PROPOSITION 3.3. If hypotheses H�j� hold, then 
1 satisfies the nonsmooth
Cerami condition at any level c�0.
Proof. Let c�0 and consider a sequence �xn�n�1⊆W

1�p
0 �Z�, such that


1�xn�−→c and
(
1+�xn�W 1�p�Z�

)
m
1

�xn�−→0 as n→+��
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Let x∗
n∈�
1�xn� be such that m
1

�xn�=�x∗
n�W−1�p′ �Z�. Such an element

exists since the set �
1�xn�⊆W−1�p′�Z�=�W
1�p
0 �Z��∗ is weakly compact (see

Section 2) and the norm functional is weakly lower semicontinuous. Let
A� W

1�p
0 �Z�−→W−1�p′�Z� be the nonlinear operator, defined by〈
A�x��y

〉
W

1�p
0 �Z�

=
∫

Z
�
x�z��p−2

�N �
x�z��
y�z���N dz ∀x�y∈W
1�p
0 �Z��

It is easy to check that A is monotone and demicontinuous, thus it is maxi-
mal monotone (see Denkowski et al. [10, Corollary 1.3.15, p. 37] or Hu and
Papageorgiou [17, Corollary III.1.35, p. 309]). We have

x∗
n=A�xn�−un ∀n�1� (3.4)

with un∈Lp′�Z� (where 1
p
+ 1

p′ =1), un�z�∈�j1�z�xn�z��dz (see Clarke [7, p. 80]).

From the choice of the sequence �xn�n�1⊆W
1�p
0 �Z�, we have∣∣〈x∗

n�xn

〉
W

1�p
0 �Z�

∣∣��n ∀n�1� (3.5)

with �n↘0 and so from (3.4), we get∣∣∣�
xn�p
p−

∫
Z
xn�z�un�z�dz

∣∣∣��n ∀n�1� (3.6)

We claim that the sequence �xn�n�1⊆W
1�p
0 �Z� is bounded. Suppose that this is

not the case. Then, by passing to a subsequence if necessary, we may assume
that �xn�W 1�p�Z�−→+�. If we use as test function x−

n ∈W
1�p
0 �Z� (see Section 2)

and we take into account (3.1), we obtain∣∣∣�
x−
n �p

p−
∫

Z
x−

n �z�un�z�dz
∣∣∣=�
x−

n �p
p ��n

and by the Poincaré inequality, we have

x−
n −→0 in W

1�p
0 �Z��

Since

�xn�W 1�p�Z�=�x+
n �W 1�p�Z�+�x−

n �W 1�p�Z� ∀n�1�

it follows that �x+
n �W 1�p�Z�−→+�. This means that in order to prove the

boundedness of �xn�n�1⊆W
1�p
0 �Z� we need to concentrate on �x+

n �n�1⊆
W

1�p
0 �Z� since x−

n →0 in W
1�p
0 �Z�. Indeed note that from (3.6) we have∣∣�
x+

n �p
p−

∫
Z
x+

n �z�un�z�dz
∣∣��n+�
x−

n �p
p = �̂n with �̂n↘0. Thus it is the part

x+
n that matters. So without any loss of generality, we may assume that xn�0 for

all n�1. Let us set

yn

df= xn

�xn�W 1�p�Z�

∀n�1� (3.7)
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By passing to a subsequence if necessary, we may assume that

yn

w−→y in W
1�p
0 �Z�

yn−→y in Lp�Z�

yn�z�−→y�z� for a.a. z∈Z

�yn�z��� k�z� for a.a. z∈Z�

with k∈Lp�Z�. We show that y �≡0. Suppose that y≡0. By virtue of hypothesis
H�j��v�, for a given �>0, we can find M1=M1���>0, such that

0 �
u

�p−1
� �1�z�+� for a.a. z∈Z� all � �M1� u∈�j�z���=�j1�z����

In addition, from hypotheses H�j� (ii), (iii) and (iv), we have

0 �
u

�p−1
� k̂�z� for a.a. z∈Z all � ∈�0�M1�� u∈�j�z����

where k̂�z�
df= kM1

�z�

Mp−1
. So finally, we can say that

0 �
u

�p−1
� k0�z� for a.a. z∈Z all � >0� u∈�j�z���=�j1�z���� (3.8)

with k0∈L��Z�. Dividing (3.6) by �xn�p

W 1�p�Z�
, we obtain∣∣∣∣∣�
yn�p

p−
∫

Z

un�z�

�xn�p−1
W 1�p�Z�

yn�z�dz

∣∣∣∣∣ � �n

�xn�p

W 1�p�Z�

�

so ∣∣∣∣∣�
yn�p
p−

∫
Zn

un�z�

�xn�p−1
W 1�p�Z�

yn�z�dz

∣∣∣∣∣ � �n

�xn�p

W 1�p�Z�

�

where Zn

df=�z∈Z �xn�z�>0� (recall that xn�0 for n�1). Thus from (3.7), we
get ∣∣∣∣∣�
yn�p

p−
∫

Zn

un�z�(
xn�z�

)p−1

(
yn�z�

)p
dz

∣∣∣∣∣ � �n

�xn�p

W 1�p�Z�

and from (3.8), we have

�
yn�p
p �

�n

�xn�p

W 1�p�Z�

+
∫

Z
k0�z�

(
yn�z�

)p
dz

�
�n

�xn�p

W 1�p�Z�

+�k0���yn�p
p�
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so

yn −→ 0 in W
1�p
0 �Z�

(recall that we have assumed that y≡0). But this contradicts the fact that
�yn�W 1�p�Z�=1 for n�1. So we infer that y �≡0.
Now, we introduce the following sequence of L��Z�-functions:

hn�z�
df=


un�z�(

xn�z�
)p−1 if z∈Zn

0 if z∈Z\Zn

∀n�1�

By virtue of hypotheses H�j� (iii), (iv) and (v), we have

0 � hn�z� � �1�z� for a.a. z∈Z and all n�1�

Thus, by passing to a subsequence if necessary, we may assume that

hn

w∗−→ h in L��Z�

with h∈L��Z�, such that

0 � h�z� � �1�z� for a.a. z∈Z� (3.9)

Since we have assumed that �xn�W 1�p�Z�−→+� and because y �≡0, we must have
that

xn�z� −→ +� for a.a. t∈�y >0��

From the choice of the sequence �xn�n�1⊆W
1�p
0 �Z�, we have∣∣∣〈A�xn��yn−y

〉
W

1�p
0 �Z�

−
∫

Z
un�z�

(
yn−y

)
�z�dz

∣∣∣ � �′
n ∀n�1�

with �′
n↘0 and so for n�1, we have∣∣∣∣〈A�yn��yn−y

〉
W

1�p
0 �Z�

−
∫

Zn

hn�z�
(
yn�z�

)p−1(
yn−y

)
�z�dz−

−
∫

Z\Zn

un�z�

�xn�W
1�p
0 �Z�

�yn−y��z�dz

∣∣∣∣� �′
n

�xn�p−1
W 1�p�Z�

�

Note that∫
Zn

hn�z�
(
yn�z�

)p−1(
yn−y

)
�z�dz −→ 0
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and ∫
Z\Zn

un�z�

�xn�W
1�p
0 �Z�

�yn−y��z�dz −→ 0�

so

limsup
n→+�

〈
A�yn��yn−y

〉
W

1�p
0 �Z�

� 0� (3.10)

But recall that A being maximal monotone and everywhere defined, it is general-
ized pseudomonotone (see Denkowski et al. [10, Corollary 1.3.67, p. 60] or Hu
and Papageorgiou [17, Remark III.6.3, p. 365]). So from (3.10), it follows that〈

A�yn��yn

〉
W

1�p
0 �Z�

−→ 〈
A�y��y

〉
W

1�p
0 �Z�

and so

�
yn�p −→ �
y�p�

Because 
yn

w−→
y in Lp
(
Z��N

)
and the latter space is uniformly convex (recall

that p∈�1�+��), we infer that


yn −→ 
y in Lp
(
Z��N

)
(Kadec–Klee property; see e.g. Denkowski et al. [9, Definition 3.6.32 and
Proposition 3.6.33, p. 309]). Therefore

yn −→ y in W
1�p
0 �Z��

Again from the choice of the sequence �xn�n�1⊆W
1�p
0 �Z�, for fixed v∈W

1�p
0 �Z�,

we have∣∣∣∣〈A�yn��v
〉
W

1�p
0 �Z�

−
∫

Zn

hn�z�
(
yn�z�

)p−1
v�z�dz−

−
∫

Z\Zn

un�z�

�xn�W
1�p
0 �Z�

v�z�dz

∣∣∣∣� �′′
n�v�

�xn�p−1
W 1�p�Z�

�

with �′′
n�v�↘0 and so∣∣∣∣∫

Z
�
yn�z��p−2

�N

(

yn�z��
v�z�

)
�N dz−

−
∫

Z
hn�z�

(
yn�z�

)p−1
v�z�dz

∣∣∣∣� �′′′
n �v�

�xn�p−1
W 1�p�Z�

�
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with �′′′
n ↘0 since −∫

Z\Zn

un�z�

�xn�W
1�p
0 �Z�

v�z�dz→0 as n→�. Passing to the limit

as n→+�, we obtain∫
Z
�
y�z��p−2

�N �
y�z��
v�z���N dz=
∫

Z
h�z��y�z��p−1v�z�dz ∀v∈W

1�p
0 �Z�

and so{−div��
y�z��p−2
�N 
y�z��=h�z��y�z��p−1 for a.a. z∈Z

y�	 =0�
(3.11)

From nonlinear regularity theory (see Lieberman [21]), we have that y∈C1���Z�
with some �∈�0�1� and so y�z��0 for all z∈Z, y �≡0. Invoking Theorem 5 of
Vazquez [28], we obtain that y�z�>0 for all z∈Z. From (3.11), (3.9) and the
fact that �1�z���1 for almost all t∈T with strict inequality on a set of positive
measure, we have

�
y�p
p =

∫
Z
h�z��y�z��pdz �

∫
Z
�1�z��y�z��pdz

< �1�y�p
p � �
y�p

p�

a contradiction, which proves the boundedness of the sequence �xn�n�1⊆W
1�p
0 �Z�.

Hence, passing to a subsequence if necessary, we may assume that

xn

w−→ x in W
1�p
0 �Z�

xn −→ x in Lp�Z��

Therefore, since∣∣∣〈A�xn��xn−x
〉
W

1�p
0 �Z�

−
∫

Z
un�z��xn−x��z�dz

∣∣∣ � �′′′
n ∀n�1�

with �′′′
n ↘0, we obtain〈
A�xn��xn−x

〉
W

1�p
0 �Z�

−→ 0

and so as above, we conclude that

xn −→ x in W
1�p
0 �Z�� �

Our aim is to verify that the energy functional 
1 satisfies a ‘Mountain Pass
geometry’ and so eventually apply Theorem 2.1. A first step in this direction is
made by the next proposition.

PROPOSITION 3.4. If hypotheses H�j� hold, then there exist ���>0, such that


1�x� � � ∀x∈W
1�p
0 �Z�� �x�W 1�p�Z�=��
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Proof. Let �∈�0���1�, where � >0 is as postulated in Lemma 3.2. By virtue
of hypothesis H�j��v�, we can find �>0, such that

j1�z��� = j�z��� �
1
p

��0�z�+���p for a.a. z∈Z and all � ∈�0����

(3.12)

On the other hand, from the other asymptotic condition (at +�) in hypothesis
H�j��v�, we can find M2 >0, such that

�u� � (
�1�z�+1

)
�p−1 for a.a. z∈Z and all � �M2�u∈�j�z���=�j1�z���

(see 3.1)). From the Lebourg mean value theorem (see Clarke [7, p. 41] or
Denkowski et al. [9, Theorem 5.6.25, p. 609]), we know that we can find û�z�∈
�j�z�� ′�=�j1�z�� ′�, where � ′ =�1−���+�M2 (� �M2 and �∈�0�1�), such that

j1�z���−j1�z�M2� = û�z���−M2�

and so

j1�z��� � j1�z�M2�+
(
�1�z�+1

)
�p (3.13)

By p∗ we denote the critical Sobolev exponent, defined by

p∗ df=


Np

N −p
if p<N

+� if p�N �

From (3.12) and (3.13) and hypothesis H�j� (ii), it follows that we can find �1 >0
and �∈�p�p∗� (both not depending on �>0), such that

j1�z��� �
1
p

(
�0�z�+�

)�� �p+�1�� �� for a.a. z∈Z and all � ∈�� (3.14)

Hence, we have


1�x� = 1
p
�
x�p

p−
∫

Z
j1�z�x�z��dz

�
1

p
�
x�p

p−
1
p

∫
Z
�0�z��x�z��pdz−

−�

p
�x�p

p−�2�
x��
p ∀x∈W

1�p
0 �Z�� (3.15)

for some �2 >0 (not depending on �). In obtaining the last inequality, we have
used the Poincaré inequality and the Sobolev embedding theorem since ��p∗
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(see Denkowski et al. [9, Theorem 3.9.52, p. 359]). From Lemma 3.2, we know
that

1
p
�
x�p

p−
1
p

∫
Z
�0�z��x�z��pdz �

�

p
�
x�p

p ∀x∈W
1�p
0 �Z�� (3.16)

Thus, using (3.16) and (2.2) in (3.15), we obtain


1�x� �
�

p
�
x�p

p−
�

�1p
�
x�p

p−�2�
x��
p�

From the choice of �>0 (recall that �∈�0���1�), we get


1�x� � �3�
x�p
p−�2�
x��

p ∀x∈W
1�p
0 �Z��

for some �3 >0. Since �>p and using the Poincaré inequality, we can find �>0
small enough, so that


1�x� � � > 0 ∀x∈W
1�p
0 �Z�� �x�W 1�p�Z�=��

This completes the proof of the proposition. �

PROPOSITION 3.5. If hypotheses H�j� hold, then 
1�tu1�−→−� as t→+�.
Proof. By hypothesis H�j��v�, we know that �1�p�1�z� for almost all z∈Z

with strict inequality on a set of positive measure. Since u1�z�>0 for all z∈Z,
we have that∫

Z
�1�z�

(
u1�z�

)p
dz >

�1

p
�u1�p

p

and so∫
Z
�1�z�

(
u1�z�

)p
dz = �+ �1

p
�u1�p

p� (3.17)

for some � >0.
For t >0, we have


1�tu1� =
tp

p
�
u1�p

p−
∫

Z
j1
(
z�tu1�z�

)
dz

= tp

p
�
u1�p

p−
∫

Z
j
(
z�tu1�z�

)
dz

(since u1�z�>0 for all z∈Z).
Let �∈�0���. By virtue of hypothesis H�j��v�, we can find M3=M3���>0,

such that

u �
(
�1�z�−�

)
�p−1 for a.a. z∈Z� all � �M3� u∈�j�z���=�j1�z���
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(see (3.1)). Then as before using the Lebourg mean value theorem and the above
inequality, we see that for almost all z∈Z and all � �M3, we have

j�z���−j�z�M3� = j1�z���−j1�z�M3�

�
(
�1�z�−�

)
��−M3��

p−1
�
(
�1�z�−�

)
�p−�4�

for some �4 >0. Thus we can find �5 >0, such that

j�z��� = j1�z����
(
�1�z�−�

)
�p−�5 for a.a. z∈Z and all � �0�

So for all t∈�+, we have


1�tu1� �
tp

p
�
u1�p

p−tp
∫

Z
�1�z�

(
u1�z�

)p
dz+�tp�u1�p

p+�6� (3.18)

for some �6 >0. Using (3.17), (3.18) and the fact that �1�u1�p
p =�
u1�p

p, we have


1�tu1� �
tp

p
�
u1�p

p−tp�− tp

p
�
u1�p

p+�tp�u1�p
p+�6�

As �u1�p =1, we obtain


1�tu1� � −tp�+�tp+�6 = tp�−�+��+�6�

From the choice of �>0, we see that 
1�tu1�−→−� as t→+�. �

Now the geometry is in place to apply the Nonsmooth Mountain Pass Theorem
(see Theorem 2.1) and produce a critical point of 
1, which we show that it is a
positive solution of (1.1).

THEOREM 3.6. If hypotheses H�j� hold, then problem (1.1) has at least one
positive solution which belongs in C1

(�Z)
.

Proof. Propositions 3.3, 3.4 and 3.5 permit the application of Theorem 2.1
with x0

df=0 (note that 
1�0�=0), x1
df= t1u1, where t1 >0 is large enough, so that


�x1�=
1�t1u1�<0 (see Proposition 3.5) and U
df={

x∈W
1�p
0 �Z� � �x�W 1�p�Z� <�

}
(see Proposition 3.4). So we obtain x0∈W

1�p
0 �Z�, such that


1�x0���>0 and 0∈�
1�x0��

Hence, we have that

A�x0� = u0�

with u0∈Lp′�Z�, u0�z�∈�j1
(
z�x0�z�

)
for almost all z∈Z, x0 �≡0. So, from (3.1),

we have〈
A�x0��x

−
0

〉
W

1�p
0 �Z�

=
∫

Z
u0�z�x−

0 �z�dz = 0
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so

�
x−
0 �p

p = 0

and thus x−
0 ≡0. It follows that x0�z��0 for almost all z∈Z and x0 �≡0. Also, we

have 〈
A�x0���

〉
W

1�p
0 �Z�

=
∫

Z
u0�z���z�dz ∀�∈C�

0 �Z��

Using the Green identity and the fact that

−div
(�
x0�·��p−2

�N 
x0�·�
) ∈ W−1�p′�Z� = (

W
1�p
0 �Z�

)∗
(see Denkowski et al. [9, p. 362]), we obtain〈−div

(�
x0�·��p−2
�N 
x0�·�

)
��

〉
W

1�p
0 �Z�

=
∫

Z
u0�z���z�dz ∀�∈C�

0 �Z��

Since the embedding C�
0 �Z�⊆W

1�p
0 �Z� is dense, it follows that{−div

(�
x0�z��p−2
�N 
x0�z�

)=u0�z� for a�a� z∈Z
x0�	 =0�

From this and nonlinear regularity theory (see Ladyzhenskaya and
Uraltseva [20, p. 286] and Lieberman [21]), we obtain that x0∈C1��

(
Z
)
with some

�∈�0�1�. Finally since u0�z��0 for almost all z∈Z (see hypothesis H�j��iii�
and recall that x0�z��0 for all z∈Z), from Theorem 5 of Vazquez [28], we
conclude that x0�z�>0 for all z∈Z and �x0

�n
�z�<0 for all z∈	 (here n denotes

unit outward normal). �
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13. Gasiński, L. and Papageorgiou, N.S. (2001), An existence theorem for nonlinear hemivariational

inequalities at resonance, Bull. Austr. Math. Soc., 63, 1–14.
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15. Gasiński, L. and Papageorgiou N.S. Two bounded solutions of opposite sign for nonlinear

hemivariational inequalities at resonance, Publ. Math. Debrecen, 63 (2003), 29–49.
16. Goeleven, D., Motreanu, D. and Panagiotopoulos, P.D. (1998), Eigenvalue problems for

variational–hemivariational inequalities at resonance, Nonlin. Anal., 33, 161–180.
17. Hu, S. and Papageorgiou, N.S. (1997), Handbook of Multivalued Analysis. Volume I: Theory,

Kluwer, Dordrecht, The Netherlands.
18. Hu, S. and Papageorgiou, N.S. (2000), Handbook of Multivalued Analysis. Volume II: Appli-

cations, Kluwer, Dordrecht, The Netherlands.
19. Kourogenis, N. and Papageorgiou, N.S. (2000), Nonsmooth critical point theory and nonlinear

elliptic equations at resonance, J. Austr. Math. Soc., 69A, 245–271.
20. Ladyzhenskaya, O. and Uraltseva, N. (1968), Linear and Quasilinear Elliptic Equations,

Academic Press, New York.
21. Lieberman, G.M. (1998), Boundary regularity for solutions of degenerate elliptic equations,

Nonlin. Anal., 12, 1203–1219.
22. Lindqvist, P. (1990), On the equation div��
x�p−2
x�+��x�p−2x=0, Proc. Amer. Math. Soc.,

109, 157–164; Proc. Amer. Math. Soc., 116 (1992), 583–584.
23. Motreanu, D. and Panagiotopoulos, P.D. (1997), Double eigenvalue problems for hemivari-

ational inequalities, Arch. Rational Mech. Anal., 140, 225–252.
24. Motreanu, D. and Varga, C. (1997), Some critical point results for locally Lipschitz functionals,

Comm. Appl. Nonlin. Anal., 4, 17–33.
25. Naniewicz, Z. and Panagiotopoulos, P.D. (1994), Mathematical Theory of Hemivariational

Inequalities and Applications, Marcel-Dekker, New York.
26. Radulescu, V. (1993), Mountain pass theorems for nondifferentiable functions and applications,

Proc. Japan Acad. Sci., Ser. A, Math. Sci., 69, 193–198.
27. Schechter, M. (1995), Superlinear elliptic boundary value problems, Manuscripta Math., 86,

253–265.
28. Vazquez, J.L. (1984), A strong maximum principle for some quasilinear elliptic equations,

Appl. Math. Optim., 12, 191–208.
29. Zhou, H.S. (2001), Existence of asymptotically linear Dirichlet problem, Nonlin. Anal., 44,

909–918.


